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Abstract. Series of extended Epstein type provide examples of non-trivial zeta functions with
important physical applications. The regular part of their analytic continuation is seen to be
a convergent or an asymptotic series. Their singularity structure is completely determined in
terms of the Wodzicki residue in its generalized form, which is proven to yield the residua of
all the poles of the zeta function, and not just that of the rightmost pole (obtainable from the
Dixmier trace). The calculation is a very down-to-earth application of these powerful functional
analytical methods in physics.

1. Introduction

A most important issue in the application of the zeta-function regularization method [1]
in physics is the precise determination of the pole structre of the analytical continuation
of the corresponding zeta function. In the recent mathematical literature, there are precise
results which characterize the meromorphic structure of the analytical continuation of the
zeta function of any elliptic pseudo-differential operator (9DO) [2], even of complex order
[3]. The position and the order of the poles is known, and also the residue of the rightmost
one, which can be determined by using either the Dixmier trace or the Wodzicki residue
of the principal symbol of the operator. Here, we obtain the residua of all the remaining
poles and illustrate their very simple calculation through such powerful functional analytical
tools, by means of two fundamental examples with physical application [4]. The additional
determination that is carried out of the regular part of the analytic continuation completes
the analysis of the meromorphic structure of the zeta functions.

A pseudo-differential operatorA of orderm on a manifoldMn is defined through its
symbola(x, ξ), which is a function belonging to the spaceSm(Rn × Rn) of C∞ functions
such that for anyα, β there exists a constantCα,β so that

|∂αξ ∂βx a(x, ξ)| 6 Cα,β(1+ |ξ |)m−|α|. (1)

The definition ofA is given (in the distribution sense) by

Af (x) = (2π)−n
∫

ei〈x,ξ〉a(x, ξ)f̂ (ξ) dξ (2)
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wheref is a smooth function (f ∈ S) and f̂ its Fourier transform. Whena(x, ξ) is a
polynomial in ξ one gets a differential operator but, in general, the orderm can be even
complex. Pseudo-differential operators are useful tools, both in mathematics and in physics.
They were crucial for the proof of the uniqueness of the Cauchy problem [5] and also for
the proof of the Atiyah–Singer index formula [6]. In quantum field theory they appear
in any analytic continuation process (as complex powers of differential operators, like the
Laplacian) [7]. They currently constitute the basic starting point of any rigorous formulation
of quantum field theory through microlocalization [8], a concept that is considered to be the
most important step towards the understanding of linear partial differential equations since
the appearance of distributions.

For A a positive-definite elliptic9DO of positive orderm ∈ R, acting on the space of
smooth sections of ann-dimensional vector bundleE over a closed,n-dimensional manifold
M, the zeta function is defined as

ζA(s) = tr A−s =
∑
j

λ−sj Res >
n

m
≡ s0. (3)

Here s0 is called the abscissa of convergence ofζA(s), which is proven to have a
meromorphic continuation to the whole complex planeC (regular ats0), provided that
A admits a spectral cut:Lθ = {λ ∈ C;Arg λ = θ, θ1 < θ < θ2}, SpecA ∩ Lθ = ∅ (the
Agmon–Nirenberg condition). Strictly speaking, the definition ofζA(s) depends on the
position of the cutLθ , not so that of the determinant [9] detζ A = exp[−A′(0)], which
only depends on the homotopy class of the cut. The precise structure of the analytical
continuation is well known [10]; it has at most simple poles at

sk = (n− k)/m k = 0, 1, 2, . . . , n− 1, n+ 1, . . . . (4)

The applications of this zeta-function definition of a determinant in physics are important
[11, 12]. A zeta function with the same meromorphic structure in the complexs-plane and
extending the ordinary definition to operators of complex orderm ∈ C\Z, has been recently
obtained in [3]. (It is clear that operators of complex order do not admit spectral cuts.) The
construction in [3] starts from the definition of a trace, obtained as the integral over the
manifold of the trace density of the difference between the Schwartz kernel ofA and the
Fourier transform of a number of first homogeneous terms (inξ ) of the usual decomposition
of the symbol ofA:

a(x, ξ) = am(x, ξ)+ am−1(x, ξ)+ · · · + am−N(x, ξ)+ · · · . (5)

2. The Dixmier trace and the Wodzicki residue

In order to write down an action in operator language one needs a functional that replaces
integration. For the Yang–Mills theory this is the Dixmier trace, which constitutes the
unique extension of the usual trace to the idealL(1,∞) of the compact operatorsT such that
the partial sums of its spectrum diverge logarithmically as the number of terms in the sum,
i.e.

σN(T ) ≡
N−1∑
j=0

µj = O(logN) µ0 > µ1 > · · · . (6)

The definition of the Dixmier trace ofT , Dtr T [13], is then a refinement of the limit

lim
N→∞

1

logN
σN(T ). (7)
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(It is directly given by this limit when the Cesaro meansM(ρ) of the sequence inN are
convergent asρ →∞.) As observed by Connes [14], the Hardy–Littlewood theorem can
be stated in a way that connects the Dixmier trace with the residue of the zeta function of
the operatorT −1 at s = 1:

Dtr T = lim
s→1+

(s − 1)ζT −1(s). (8)

The Wodzicki (or non-commutative) residue [15] is the only extension of the Dixmier
trace to9DOs which are not inL(1,∞). Even more, it is the only trace one can define in
the algebra of9DOs up to a multiplicative constant. It is given by the integral

resA =
∫
S∗M

tr a−n(x, ξ)dξ (9)

with S∗M ⊂ T ∗M the co-sphere bundle onM (some authors put a coefficient in front of
the integral). If dimM = n = −ordA (M compact Riemann,A elliptic, n ∈ N) it coincides
with the Dixmier trace, and one has [15]

Ress=1ζA(s) = 1

n
resA−1. (10)

However, the Wodzicki residue continues to make sense for9DOs of arbitrary order and,
even if the symbolsaj (x, ξ), j < m, are not invariant under coordinate choice, the integral
in (9) is, and defines a trace. In particular, the residua of the poles of the extended definition
of the zeta function to operators of complex order are also given by the non-commutative
residue. Moreover, an interesting connection of the Wodzicki residue with the second
coefficient of the heat-kernel expansion of the Laplacian has recently been found [16, 17].
An overview on physical applications of noncommutative geometry can be found in [18]
(see also references therein).

The advantage of the explicit computation of the residues of the poles of the zeta
function by this method—which relies in its extreme simplicity—will become clear when
we discuss some basic examples in the following section.

3. Calculation of the residues of the poles of the zeta function

A complete determination of the meromorphic structure of the zeta function in the complex
plane is obtained as follows. Relying on the above results, what is missing for the description
of the singularities are the residua of all the remaining poles. As for the regular part of
the analytic continuation, specific methods have to be used and the results are non-trivial;
asymptotic series and not convergent ones, appear most often [19].

Proposition 1. Under the conditions of existence of the zeta function ofA, given above,
and assuming that the symbola(x, ξ) of the operatorA is analytic in ξ−1 at ξ−1 = 0,
the formula for the determination of the residue of the rightmost pole (by means of the
Wodzicki residue) can be generalized to calculateall the residua of the zeta function poles,
in the way:

Ress=sk ζA(s) =
1

m
resA−sk = 1

m

∫
S∗M

tr a−sk−n (x, ξ)dn−1ξ. (11)
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Proof. One just has to notice that the homogeneous component of degree−n of the
corresponding power of the principal symbol ofA is obtained by taking the appropriate
derivative of a power of the symbol with respect toξ−1 at ξ−1 = 0, namely

a
−sk−n (x, ξ) =

(
∂

∂ξ−1

)k
[ξn−ka(k−n)/m(x, ξ)]

∣∣∣∣
ξ−1=0

ξ−n. (12)

The proof then follows by simple algebraic manipulation. �

These results will now be illustrated with two examples. Aside from the Riemann and
Hurwitz zeta functions, the Epstein ones [20] and generalizations thereof are most basic
tools in the zeta-function regularization method [19]. They appear in the calculation of
the vacuum energy or effective potentials of quantum physical systems involving toroidal
compactification, finite temperature, massive particles, or a chemical potential. Consider a
spacetime with topologyR× T 2 [21] and a general metric onT 2: ds2 = hab dxa dxb, with

hab = 1

τ2

(
1 τ1

τ1 |τ |2
)

(13)

(τ1, τ2) being the Teichm̈uller parameters,τ = τ1 + iτ2, τ2 > 0. The Laplace–Beltrami
operator is:L = −τ−1

2 (|τ |2∂2
1−2τ1∂1∂2+∂2

2) and its eigenvaluesλn1,n2 = 4π2τ−1
2 (|τ |2n2

1−
2τ1n1n2 + n2

2). In the massive case the spectrum runs overn1, n2 ∈ Z. If m = 0 the zero-
moden1 = n2 = 0 has to be excluded. Under different boundary conditions (Dirichlet and
Neumann, for instance) one gets a restriction of the indices to non-negative values and in
many situations—as is the case of spherical compactification—a one-dimensional variant of
the Laplacian appears [19]. This leads us to consider two families of such operators—plus
boundary conditions in general. The corresponding zeta functions belong to the family of
generalized Epstein zeta functions

ζE(s; a, b, c; q) ≡
∑
m,n∈Z

(am2+ bmn+ cn2+ q)−s Res > 1 (14)

(whereq is the mass, chemical potential or finite-temperature contribution) or to the simpler
version [22]

ζG(s; a, c; q) ≡
∞∑

n=−∞
[a(n+ c)2+ q]−s Res > 1/2. (15)

The restriction of these series to non-negative values of the indices will be denoted by
ζEt and ζGt

, respectively. The parenthesis in (14) is an inhomogeneous quadratic form,
Q(x, y) + q, restricted to the integers. We assume thata, c > 0 and1 = 4ac − b2 > 0
[23]. The starting point for the derivation of the formulae is Jacobi’s theta function identity
∞∑

n=−∞
e−(n+z)

2t =
√
π

t

[
1+

∞∑
n=1

e−π
2n2/t cos(2πnz)

]
z, t ∈ C,Ret > 0. (16)

Example 1. Consider first the second function, which is simpler. Making use of the Jacobi
identity we get the analytical continuation

ζG(s; a, c; q) =
√
π

a

0(s − 1/2)

0(s)
q1/2−s + 4πs

0(s)
a−1/4−s/2q1/4−s/2

×
∞∑
n=1

ns−1/2 cos(2πnc)Ks−1/2(2πn
√
q/a) (17)
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whereKν is the modified Bessel function of the second kind. Associated with the above
zeta functions, but considerably more difficult to treat, are the corresponding truncated sums,
with indices running from 0 to∞. In this case the Jacobi identity is of no use. By means
of specific techniques of analytic continuation of zeta functions [19], we obtain

ζGt
(s; a, c; q) ∼

(
1

2
− c

)
q−s + q−s

0(s)

∞∑
m=1

(−1)m0(m+ s)
m!

(
q

a

)−m
ζH (−2m, c)

+
√
π

a

0(s − 1/2)

20(s)
q1/2−s + 2πs

0(s)
a−1/4−s/2q1/4−s/2

×
∞∑
n=1

ns−1/2 cos(2πnc)Ks−1/2(2πn
√
q/a). (18)

The first series is asymptotic [23, 24]. From the previous expressions one can calculate
the determinants of Klein–Gordon and Dirac operators on compact spaces as, for instance,
N -cubes, cylinders and spheresSN (whenever the spectrumλn is a polynomial inn).

The meromorphic structure of these zeta functions is described by the general theory.
According to it, in principle, poles at the positionss = −1,−2,−3, . . . could also be
possible. They just have zero residue, as we shall now prove. The residue of the rightmost
pole ats = 1/2 can be obtained from the Dixmier trace:

DtrG−1/2 = lim
N→∞

1

logN

N−1∑
j=0

[a(j + c)2+ q]−1/2 = 1√
a

(19)

which is in fact the value of the residue of the pole ats = 1/2 in (17), thus Ress=1/2ζG(s) =
DtrG−1/2. Now to the second step: the residue of this pole ats = 1/2 can also be obtained
from the Wodzicki residue. In fact, we have:

resG−1/2 =
∫
S∗R

tr g−1/2
−1 (ξ) dξ = 2√

a
(20)

(note thatg−1/2(ξ) = ξ−1+O(ξ−2) and that the zero-dimensional sphere is reduced to two
points, namelyS∗R = S0 = {−1, 1}). Thus,

Ress=1/2ζG(s) = 1
2 resG−1/2. (21)

Having dealt with the rightmost pole in all possible ways, we now analyse the others
by means of the generalized Wodzicki residue. We will prove that

Ress=1/2−kζG(s) = 1
2 resGk−1/2 Ress=−kζG(s) = 0 k = 0, 1, 2, . . . . (22)

The decomposition of the corresponding symbol into homogeneous parts yields

gk−1/2(ξ) = ξ2k−1

[
1+ k − 1/2

1!

q

ξ2
+ · · · + (k − 1/2)(k − 3/2) . . .1/2

k!

qk

ξ2k
+ · · ·

]
= ξ2k−1+ · · · + (2k − 1)!!

k!2k
qk

ξ
+ · · · k = 0, 1, 2, . . .

gk(ξ) = (ξ2+ q)k = ξ2k + · · · + qk k = 0, 1, 2, . . . (23)

therefore,

tr gk−1/2
−1 (ξ) = (2k − 1)!!qk

k!2k
tr gk−1(ξ) = 0 k = 0, 1, 2, . . . . (24)
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Thus, we obtain

Ress=1/2−kζG(s) = 1

2
resGk−1/2 = (2k − 1)!!qk

k!2k

Ress=−kζG(s) = 1

2
resGk = 0 k = 0, 1, 2, . . . (25)

which coincide in fact with the residues of the poles ofζG(s) at s = sk, as we wanted to
see. The fact that some of the would-be poles are actually not present follows from the
decomposition (23) showing clearly that their residua are zero. To be noticed is the fact
that the absence of these poles is a consequence of the well-known Seeley theorem, which
is thus here obtained, in some way, as a bonus. We see in this example how the Wodzicki
residue under its more general form allows us to calculate all the residua of the poles of the
zeta function. The meromorphic structure of the analytical continuation of the zeta function
is absolutely specified through the Dixmier trace and the Wodzicki residue in its general
form. However, we have also shown through our explicit calculation that what remains can
in no way be considered as a trivial analytic part. It may be given by a convergent series
but, possibly, by an asymptotic one.

Example 2. It is more involved. In the homogeneous case the analytic continuation of this
Epstein zeta function is given by the Chowla–Selberg formula [23]

ζE(s; a, b, c; 0) = 2ζ(2s)a−s + 22s√πas−1

0(s)1s−1/2
0(s − 1/2)ζ(2s − 1)

+ 2s+5/2πs

0(s)1s/2−1/4
√
a

∞∑
n=1

ns−1/2σ1−2s(n) cos(πnb/a)Ks−1/2

(πn
a

√
1
)
. (26)

whereσs(n) ≡
∑

d|n d
s , sum over thes-powers of the divisors ofn. (There is a misprint

in the transcription of formula (26) in [26].) We observe that the right-hand side of (26)
exhibits a simple pole ats = 1, with residue

Ress=1ζE(s; a, b, c; 0) = 2π√
1
. (27)

In the general case, we have obtained the meromorphic continuation

ζE(s; a, b, c; q) = 2πq1−s

(s − 1)
√
1
+ 4

0(s)

[(
q

a

)1/4(
π√
qa

)s
×
∞∑
k=1

ks−1/2Ks−1/2

(
2πk

√
q

a

)
+
√
q

a

(
2π
√
a

q1

)s ∞∑
k=1

ks−1Ks−1

(
4πk

√
aq

1

)

+
√

2

a
(2π)s

∞∑
k=1

ks−1/2 cos(πkb/a)
∑
d|k
d1−2s

(
1+ 4aq

d2

)1/4−s/2

×Ks−1/2

(
πk

a

√
1+ 4aq

d2

)]
. (28)

This is a fundamental result. It looks rather different from the Chowla–Selberg formula
(26), but it can actually be viewed as its natural extension to the caseq 6= 0. It also shares
all the good properties of (26).

As in example 1, the only pole of this zeta function can be obtained by using either the
Dixmier trace or the Wodzicki residue. In fact,

DtrE−1 = lim
N→∞

1

log(N2)

N∑
m,n=−N

(am2+ bmn+ cn2+ q)−1 = 2π√
1

(29)
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which is the value of the residue of the pole ats = 1, thus

Ress=1ζE(s) = DtrE−1. (30)

Moreover, this value can also be obtained from the Wodzicki residue

resE−1 =
∫
S∗R2

tr e−1
−2(ξ) d2ξ = 1

a

∫ 2π

0

[(
tanθ + b

2a

)2

+ 1

4a2

]−1

d(tanθ) = 4π√
1
. (31)

Here the integral is performed over the unit circumference (S∗R2 = S1, |ξ | = 1). Thus,

Ress=1ζE(s) = 1
2 resE−1. (32)

We have thus shown again how the rightmost pole of the zeta function can be obtained either
from the Dixmier trace or from the Wodzicki residue. The fact that this is the only pole
of our zeta function also follows from the calculation of the generalized Wodzicki residua.
According to the general theory, the other possible poles would be ats = sk = 1− k/2,
k = 1, 3, 4, . . . . We must obtain the homogeneous component of degree−2 of the principal
symbol of the operatorEk/2−1

ek/2−1(ξ1, ξ2) = (aξ2
1 + bξ1ξ2+ cξ2

2 + q)k/2−1. (33)

But it is clear that neither fork odd nor fork even is there any component of this principal
symbol of degree−2. All corresponding residua are zero and none of these poles exists.

The most difficult case in the family of Epstein-like zeta functions corresponds to having
a truncatedrange. This comes about when one imposes boundary conditions of the usual
Dirichlet or Neumann type [19]. Jacobi’s theta-function identity is then useless and no
expression in terms of a convergent series for the analytical continuation to values of Res

below the abscissa of convergence can be obtained. The best one gets is an asymptotic series
expression. However, the issue of extending the Chowla–Selberg formula or, better still,
the more general one we have obtained before for inhomogeneous Epstein zeta functions in
two indices, is not simple and has never been adressed in the literature. In order to obtain
the analytic continuation to Res 6 1 of the truncated inhomogeneous Epstein zeta function
in two dimensions,

ζEt (s; a, b, c; q) ≡
∞∑

m,n=0

(am2+ bmn+ cn2+ q)−s (34)

we can proceed in two ways: either by a direct calculation that leads to the generalized
Chowla–Selberg formula [19] or by using the formulae for the Epstein zeta function in one
dimension (example 1) recurrently. In both cases the result is

ζEt (s; a, b, c; q) ≡
∞∑

m,n=0

(am2+ bmn+ cn2+ q)−s

∼ (4a)s

0(s)

∞∑
m,n=1

(−1)m0(m+ s)
m!

(2a)2m(1n2+ 4aq)−m−sζH

(
− 2m; bn

2a

)

− bq1−s

(s − 1)10(s − 1)

∞∑
n=0

(−1)n0(n+ s − 1)Bn
n!

(
4aq

1

)−n
+q
−s

4
+ πq1−s

2(s − 1)
√
1
+ 1

4

(√
π

a
+
√
π

c

)
0(s − 1/2)

0(s)
q1/2−s

+ 1

0(s)

[
2

(
q

a

)1/4(
π√
qa

)s ∞∑
k=1

ks−1/2Ks−1/2

(
2πk

√
q

a

)
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+
(

4aq

1

)1/4(
2π
√
a

q1

)s ∞∑
k=1

ks−1/2Ks−1/2

(
4πk

√
aq

1

)
+
√
q

a

(
2π
√
a

q1

)s
×
∞∑
k=1

ks−1Ks−1

(
4πk

√
aq

1

)
+
√

2

a
(2π)s

∞∑
k=1

ks−1/2 cos(πkb/a)

×
∑
d|k
d1−2s

(
1+ 4aq

d2

)1/4−s/2
Ks−1/2

(
πk

a

√
1+ 4aq

d2

)]
. (35)

This imposing formula is new too. The first series is in general asymptotic, but it converges
for a wide range of values of the parameters. The second series is always asymptotic and
contributes to the pole ats = 1. As in the case of the fundamental formula, (28), the pole
structure is here explicitly, although much more elaborate. Apart from the pole ats = 1,
there is here a sequence of poles ats = ±1/2,−3/2,−5/2, . . . . Calculations similar to the
previous ones lead to the determination of the residua of the poles in this case by means of
the same expressions as before.
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